
1

NIST Performance Analysis of the Final Round Java™ AES
Candidates

Jim Dray
Computer Security Division

The National Institute of Standards and Technology
james.dray@nist.gov

March 15, 2000

1. Introduction

NIST solicited candidate algorithms for the Advanced Encryption Standard (AES) in a
Federal Register Announcement dated September 12, 1997[1]. Fifteen of the
submissions were deemed “complete and proper” as defined in the Announcement, and
entered the first round of the AES selection process in August 1998. Since that time,
NIST has been working with a worldwide community of cryptographers to evaluate the
submissions according to the criteria established in[1]. Five candidates were
subsequently chosen to enter the final round of the selection process: MARS, RC6,
Rijndael, Serpent, and Twofish.

A previous NIST publication entitled “Report on the NIST Java™ AES Candidate
Algorithm Analysis”[2] documents the first round analysis performed by NIST, using the
Java Development Kit (JDK) Version 1.1.6. Only IBM has submitted official
modifications to their candidate (MARS) prior to the final round. Results of the first
round analysis using the JDK1.1.6 are therefore still valid for the other four candidates.
The revised version of MARS was tested under both JDK1.1.6 and JDK1.3, to ensure an
accurate comparison of the modified algorithm’s performance in both environments.
Performance data for 128, 192, and 256-bit keysizes are also included in the second
round analysis.

The JDK itself has gone through two major revisions since the first round. This paper
documents additional performance data for the five AES finalists obtained under JDK1.3,
and should be used in combination with the first round NIST Java AES analysis to obtain
a complete picture of the characteristics of the finalists in different Java environments.
Some background information from the first round analysis is repeated herein for
convenience. Comments should be addressed to the author at the email address above.

2

2. Java Platform

AES candidate algorithm submitters were required to provide optimized implementations
of their algorithms in Java and the C language. The rationale for this was to provide
more information than could be obtained by testing implementations in a single language,
and to take advantage of the hardware independence of the Java virtual machine.

The Java virtual machine presents a uniform abstraction of the underlying hardware
platform to a Java application or applet. A Java programmer compiles source code into
byte code files, which are then interpreted by the Java virtual machine at runtime (byte
code files are also known as class files). In theory, a Java byte code file can be
interpreted on any hardware platform running the Java virtual machine without
recompilation. Since the virtual machine isolates the Java programmer from the
underlying hardware, Java programmers cannot write machine-specific code to take
advantage of the unique features of a particular platform. Machine-specific code allows
for optimization on a given computing platform, but also eliminates the code portability
that is a cornerstone of the Java philosophy.

The Java environment has two characteristics that facilitate the AES evaluation process.
First, candidate algorithms written in Java can be easily moved from one platform to
another to compare performance on different processors at different system clock speeds.
Second, submitters cannot write machine-specific code and so all implementations are on
a level playing field.

Java does not provide the level of performance that can be attained in some other
languages (C or assembler, for example). However, many applications do not require
high-speed encryption of large amounts of data, and cryptoalgorithms implemented in
Java are easier to integrate into Java applications. Other languages and hardware
implementations will be used for applications where absolute performance is an issue, but
there will also be a broad range of applications where the ease of implementing,
integrating, and maintaining Java AES code outweighs the performance issue.

3. Evaluation Criteria

The NIST Java AES evaluation process is designed to directly address the criteria
published in the Federal Register Announcement[1], Section 4. The goal is to provide
objective results that can be clearly quantified for use in the selection process. Sections
of the Announcement that describe selection critera relevant to the Java AES analysis are
repeated here for convenience:

COST

ii. Computational Efficiency: “…Computational efficiency essentially refers
to the speed of the algorithm. NIST’s analysis of computational efficiency

3

will be made using each submission’s mathematically optimized
implementations on the platform specified under Round 1 Technical
Evaluation below.”

iii. Memory Requirements: “Memory requirements will include such factors
as gate counts for hardware implementations, and code size and RAM
requirements for software implementations.”

ALGORITHM AND IMPLEMENTATION CHARACTERISTICS

i. Flexibility:

b. “The algorithm can be implemented securely and efficiently in a wide
variety of platforms and applications (e.g. 8-bit processors, ATM
networks, voice & satellite communications, HDTV, B-ISDN, etc.).”

ii. Simplicity: “A candidate algorithm shall be judged according to relative
simplicity of design.”

Additionally, in Section 6.B (Round I Technical Evaluation):

iii. Efficiency testing: “Using the submitted mathematically optimized
implementations, NIST intends to perform various computational
efficiency tests for the 128-128 key-block combination, including the
calculation of the time required to perform:

o Algorithm setup,
o Key setup,
o Key change, and
o Encryption and decryption.

NIST may perform efficiency testing on other platforms.”

In condensed form, the published NIST criteria require testing of speed for a set of
cryptographic operations, code size and RAM requirements, flexibility, and simplicity of
design. Since the candidates have been implemented in Java, flexibility is a given for the
reasons discussed in the previous section. The Java AES candidates will run on any
device containing a Java virtual machine and adequate memory, although performance
will obviously vary depending on the processing power of the underlying hardware.

4. Test Procedures

4.1 Overview

4

The test results presented here were obtained from the NIST-specified hardware platform
and the most recent version of the Java environment available at the time of this writing
(JDK1.3, beta release). Results for other hardware/Java virtual machine combinations
will be made available on the AES home page at http://www.nist.gov/aes, and in papers
submitted to NIST by other organizations[3,4,5]. Detailed test results are presented in
tabular form in Appendices A and B, and chart form in Appendix C. All NIST testing
was performed through the Applications Programming Interface (API) specified in the
NIST/Cryptix Java AES Toolkit. Links to the Toolkit and the Java AES API
specification can be found at http://csrc.nist.gov/encryption/aes/earlyaes.htm.

The Java compiler provided with JDK1.3 accepts a command line code optimization
switch (-O). However, the JDK1.3 documentation[6] states that this switch “does
nothing in the current implementation”. Presumably the compiler accepts the
optimization switch for reasons of backward compatibility.

4.2 Procedures

Candidate algorithms were compiled from source files provided by submitters using the
JDK1.3 compiler. The resulting bytecode files were packaged into a standard Java
ARchive (JAR) file named AESCLASSES.jar.

A Java application was developed to allow testing of any candidate/ keysize/operation
combination. The test application instantiates the desired candidate from
AESCLASSES.jar, and uses the Java reflection API to invoke the Basic API methods.

500,000 cycles of each candidate/keysize/crypto operation were executed, and the total
time was recorded for each combination. Start and stop times were obtained through
calls to the System.time.millis() method provided in the Java core library, immediately
before and after starting the loop that executed the crypto operations. Charts 1, 2, and 3
present performance data for key setup, encrypt, and decrypt operations, respectively.
Data points are included for 128, 192, and 256-bit key sizes. For the majority of
candidates, encryption and decryption speed is approximately equal for all three key
sizes. Rijndael is a minor exception: encryption speed decreases by approximately three
percent for each stepwise increase in key size.

5. Results

In comparison to the JDK1.1.6 performance data presented in NIST’s previous paper[2],
the results obtained with JDK1.3 show a striking increase in execution speed for all
candidates. On average, the five candidates perform 128-bit key setup operations eleven
times faster. The average speed for encrypt and decrypt operations has increased by a
factor of five. The same hardware platform and program code (except for MARS) were
used for both first round and final round testing, so the overall increase in performance

5

can be attributed to differences in the Java environment. In particular, JIT (Just-In-Time)
compilation was not used during the first round performance analysis due to a bug in the
JDK1.1.6 JIT implementation that caused problems with certain candidates. Usage of the
JIT compiler under JDK1.1.6 increases performance by a factor of ten for most Java
programs.

Performance data for the new version of MARS under JDK1.1.6 are presented separately
in Appendix A. The test setup for the MARS/JDK1.1.6 analysis was exactly the same as
for the other algorithms during the first round, and is described in[2].

In addition to the overall performance increase of the finalists under JDK1.3, there were
some changes in the relative ordering of candidates. Most of these changes in order were
due to relatively small performance differences, as shown in Appendices B and C. The
results for 128-bit keysize operations are summarized below, with candidates ordered
from fastest to slowest:

128-bit Key Setup:

JDK1.1.6: Rijndael, RC6, MARS, Twofish, Serpent

JDK1.3: RC6, MARS, Rijndael, Serpent, Twofish

128-bit Encrypt:

JDK1.1.6: RC6, Rijndael, MARS, Serpent, Twofish

JDK1.3: Rijndael, RC6, MARS, Serpent, Twofish

128-bit Decrypt Operations:

JDK1.1.6: RC6, Rijndael, MARS, Serpent, Twofish

JDK1.3: Rijndael, RC6, MARS, Twofish, Serpent

“Sun”, “Sun Microsystems”, “Solaris”, and “Java” are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and other countries. All SPARC trademarks are used under license
and are trademarks or registered trademarks of SPARC International, Inc. in the United States and other
countries.

6

REFERENCES

1. “Announcing Request for Candidate Algorithm Nominations for the Advanced
Encryption Standard (AES)”, Federal Register: September 12, 1997 (Volume 62,
Number 177), Pages 48051-48058.

2. J. Dray, “Report on the NIST Java™ AES Candidate Algorithm Analysis”,
http://csrc.nist.gov/encryption/aes/round1/r1-java.pdf , November 8, 1999.

3. A. Folmsbee, “AES Java™ Technology Comparisons”, Proceedings of the
Second Advanced Encryption Standard Candidate Conference, March 22, 1999,
Pages 35-50.

4. K. Aoki, “Java Performance of AES Candidates”, Submitted to NIST via email in
response to the call for public comments on the AES candidates, April 15, 1999.

5. A. Sterbenz, P. Lipp, “Performance Analysis of Java Implementations of the
Second Round AES Candidate Algorithms”, Submitted to NIST via email,
January 2000.

6. Java™ 2 SDK, Standard Edition Documentation (Version 1.3),
http://java.sun.com/products/jdk/1.3/docs/.

7

APPENDIX A: JDK1.1.6 DATA FOR MARS

Key Size Key Setup Encrypt Decrypt
128 bits 165 462 444
192 bits 244 466 444
256 bits 324 465 445

Table data are presented in kilobits per second.

8

 APPENDIX B: RAW DATA TABLES

Algorithm setKey128 setKey192 setKey256
RC6 2233 3335 4444
MARS 2110 3131 4131
Rijndael 1191 1574 1733
Serpent 487 734 979
Twofish 286 327 361

Algorithm Encrypt128 Encrypt192 Encrypt256
Rijndael 4855 4664 4481
RC6 4698 4740 4733
MARS 3738 3707 3733
Serpent 1843 1855 1861
Twofish 1749 1749 1744

Algorithm Decrypt128 Decrypt192 Decrypt256
Rijndael 4819 4624 4444
RC6 4733 4698 4740
MARS 3965 3965 3936
Serpent 1873 1897 1896
Twofish 1781 1775 1781

Table data are presented in kilobits per second.

9

APPENDIX C: PERFORMANCE DATA CHARTS

10

Chart 1: Key Setup

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

RC6 MARS Rijndael Serpent Twofish

kb
it

s/
se

c setKey128

setKey192

setKey256

11

Chart 2: Encrypt

0

1000

2000

3000

4000

5000

6000

Rijndael RC6 MARS Serpent Twofish

kb
it

s/
se

c Encrypt128

Encrypt192

Encrypt256

12

Chart 2.3: Decrypt

0

1000

2000

3000

4000

5000

6000

Rijndael RC6 MARS Serpent Twofish

kb
it

s/
se

c Decrypt128

Decrypt192

Decrypt256

